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GRADIENT METHODS FOR ANALYTIC ROTATION

ABSTRACT

Gradient methods are employed in orthogonal and oblique analytic

rotation.

Constraints are imposed on the elements of the transformation

matrix by means of reparameterisations.




GRADIENT METHODS FOR ANALYTIC ROTATION

1. INTRODUCTION

The analytic rotation of a factor matrix is a problem in optimisation
subject to constraints. Given a p x m factor matrix, A , we have to

findan mx m transformation matrix, T , which optimises a function,

) f , of the elements of the rotated factor matrix ot
A= AT .

The transformation matrix is required to satisfy certain constraints;
T'T = I (1)

in orthogonal rotation, and
piag(T ) - 1 ()

in oblique rotation of the primary factor pattern.

If the reference structure rather than the primary factor pattern
is to be rotated obliquely, other constraints are impossed on T . This
approach, however, has serious disadvantages which have been pointed out
by Jennrich & Sampson (1966). It will not be considered here.

Iterative algorithms for optimising a criterion for simple structure,
f , which operate on pairs of columns of the factor matrix sequentially

) have been successful, both in orthogonal rotation (Kaiser, 1959) and in

oblique rotation of the factor patter:i. (Jennrich & Sampson, 1966). Such’
algorithms do, nowever, have some disadvantages. Rounding errors can

accumulate during iteration. Also, each sten yields a conditional
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optimum of f with respect to one free parameter holding the rest fixed, a
process which can sometimes converge slowly, particularly when the number
of parameters is large (Box et al., 1969. p. 25).

Another algorithm for orthogonal rotation which obtains a new T on
each iteration and does not accumulate rounding error has been proposed
by Horst (1965, Sections 18.4, 18.7.2; Mulaik, 1972, Section 10.5). Little
is yet known about convergence properties of the algorithm.

A gradient method with the property of quedraiic termination, the
Fletcher-Powell method, has been employed with considerable success by
Breskog (1967, 1969) in maximum likelihood factor analysis. The purpose
of this paper is to show that gradient methods, such as that of Fletcher
& Powell (1963), can easily be employed in analytic rotation. Reparameter-
isations are used, the m2 elements of T being expressed as functions of
a smaller number of free parameters. Since a new T 1is obtained at each
step of the algorithm, there is no accumulation of rcunding error.

Section 2 reviews some basic results concerning the function to be
minimised. A reparameterisation for orthogonal rotation and formulae for
the gradient are given in Section 3. Corresponding results for oblique
rotation are given in Section 4. 1In Section 5 the implementation of the

procedures is discussed.

2. CRITERIA FOR SIMPLE STRUCTURF

The methods to be given subsequently are general and require only a
criterion for simple structure to be minimised, f , and a corresponding

m xm matrix of first derivatives




Z=3r

A property of the criterion which will be assumed is that f 1is invariant

under interchanges or reflections of columns of T .

We shall specifically consider a family of criteria for simple

structure, dependent on a parameter k ( 0 < k <1 ), which was proposed

by Crawford & Ferguson (1970):

= (1 - k) tr[Dﬁ] + K tr[Ds] - tr[A'AB] (3)
where
Dn = Diag(Aan')
Dy = Diag(A'A)
3 2D
[7dy5 =74

This family of criteria is equivalent to the Orthomax family in
orthogonal rotation (Crawford & Ferguson, 1970, p. 324). Minimising f
with k = O gives the Quartimax solution, «k = l/p gives the Varimax
' solution, k = m/(2p) gives the Equamax solution and k = (m - 1)/(p + m - 2)

gives the Parsimax solution.
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In oblique rotation, minimisation of f (at least, when O <k < 1)

cannot result in the factor correlation matrix,
-1 =7
L

becoming singular (Crawford & Koopmar, 1972). This result follows
immediately from a theorem due to Jennrich & Sampson (1966, Theorem 1).

Minimising f with k = O gives the Quartimin solution considered by

Jennrich & Sampson.

The m x m matrix of first derivatives of f with respect to the

elements of T is (Mulaik, 1972, Section 10.5):
Z=af='.LA'{(l-rc)DA+ KAD -AB] . (&)
or 7 y
It is of interest to note that f may be computed using

f == tr[T'2) (5)

i

which is equivalent to (3).

5. ORTHOGONAL ROTATION

In order to impose the m(m + 1)/2 constraints in (1) on the e

elements of T we shall express T as a function of
qd=m" -mm+1)/2 =mm - 1)/2 (6)

parameters by means of the Cayley formulas (Gantmacher, 1959, pp. 288-289).

If T is any orthogonal matrix such that




T+l 40 , (1)

then there is a nonsinguler matrix X , where

X5 = Kps i> (8)
x. =1 i=1,2 «oom (9)
such that
Teoxt-o1 . (10)

Conversely, given any nonsingular X satisfying (8) and (9), the matrix
T constructed from (10) will satisfy (1).

We can therefore regard the transformation matrix T as a function
of a matrix X with elements satisfying (8) and (9) and minimise f with
respect to the m(m - l)/2 free parameters X XzpsXzn oo Xm,m-l .

If necessary, the matrix X corresponding to a particular T may be

obtained from
-1
X=2(I+T) . (11)

Because of (7), orthogonal matrices such as

which result in :nterchanges or reflections of columns of A cannot be
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represented by (10). This, however, does not matter since f is invariant
under such operations.
Gradient methods for minimising f will require first derivatives of

f with respect to the xij (i < j) . Using the chain rule we obtain:

of tr] Of_ OT
ox..  ¥| oT" &%, .
1J ij
otplztx L X -1,
= -2tr{2'X g——X ]
Xij
= 2([X'lz'x'1]ij - [X'IZ'x'l]ji) . (12)

This result is general. Simplification is possible when Z is
defined by (4). It is easily verified that X-lA'DnAX-l is symmetric.

Consequently the first term in (4) may be discarded and (12) becomes
of -1..-1 -1 -1
5;;; = 2(1x " twx ]ij [x~twx ]ji) (13)
where

W= k{KDyA' - (A5)']A

This simplification reflects the fact that the first term in (3)

remains constant when T 1is orthogonal.
4. OBLIQUE ROTATION

The m constraints in (2) may be imposed on the m2 elements of T

by expressing T as a function of
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a=m -m=m(m-1) (1k)

parameters.

If T 1is any nonsingular matrix which satisfies (2) and which has

nonnegative diagonal elements,

t.. >0

i1 , i=12 ...mn (15)

then there is a nonsingular matrix X , with diagonal elements satisfying

(9), such that

X Diag% (v) (16)

=3
"

where
TV =X

Conversely, given any nonsingular X , the matrix T constructed using
(16) will satisfy (2).

We may therefore define the transformation matrix, T , by (16)
and minimise f with respect to the m(m - 1) nondiagonal elements of
X . Again, certain permutations or reflections of columns of T cannot
be represented because of (15). Given any nonsingular T , however, it is
always possible to interchange and reflect columns so that (15) is
satisfied.

The factor correlation matrix is
-1 -1
C = Diag 2(V) V Diag 2(V)
and, if necessary, X may be obtained from T using

X=T Diag'l(T) . (17)




]

The gradient is given bty

0 0
axf =t [ i' diT ] (1 { J)
iJ ij

tr z'{ %— Diag(V) - X Diag (V) Diag(x‘l Erx v)”
L i 5

X,
ij i

ll

1 1
{2 Diag2(V) -~ X*~ Diag(Z'X) Diag 2(V) v]i‘j . (18)

5. EXPERIENCE WITH GRADIENT METHODS

In employing gradient methods, the eriterion for simple structure,
is regarded as a function oF the q free elements of the matrix X , where
q is defined by (6) or (14). Given X , the transformation matrix T
is obtained from (10) or (10), the elements, Bf/axij , of the gradient
are obtained from (13) or (18) and (4), and f is obtained from (3) or
from (5).

Two gradient methods were tried. The first was Fuetcher's (1970)
method, a development of the Fletcher-Powell (1963) method which seems to
require fewer function evaluations. The second was the Polak-Ribiére
method (Polak, 1971) which is similar to the conjugate gradient method
of Fletcher& Reeves (1964). Fletcher's method, like t'.at of Fletcher &
Powell, builds up an inverse Hessian matrix. The Fletcher-Reeves and
Polak-Ribiére methods do not. Corsequently, they require less computer
storare than the Fletcher and Fletcher-Powell methods but appear to con-

verge less rapidly. When the number of factors, m , is less than six or
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seven, there are advantages in employing an algoritnm which builds .¢ an
inverse Hessian like that of Fletcher; when m is large, storage con-
siderations could require the use of the Fle:her-Reeves or Polak-Ribidre
methods.

The Fletcher method wes implemented by making minor changes to a
subroutine package prepared by Gruvaeus & J8reskog {(1970) for the F)- icher-
Powell method. As suggested by Gruvaeus & J¥reskog (1970), a starting point
for the Fletcher method was obtained by carrying out a few initial steepest
descent iterations, starting with X = I . The steepest descent iteratious
were terminated when two consecutive iterations yielded a relative decrease
in £ of less than five percent.

In applications the «lgorithm has appeared to be satisfactory. Table 1

shows the orthogonal and oblique factor matrices obtained for Hayrman's 24

vsychological tests (Harman, 1960, Table 10.10) with k = 1/p (Varimax).
Row normalisation of A (e.g., Harman, 1960, p. 302) was not carried out.
Table 2 gives the primary factor correlation matrix C  for the oblique

solution. Deteils of the iterations are shown in Table 3. It can

D R R R R . T Spppepy
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be seen that the oblique rotation required more iterations than the
orthogonal rotation. This was found to be true in general and can be
expected since more free parameters are involved in oblique rctation.
Iteration was terminated when all elements of the gradient vector were
less than .00001L x 24 in absolute value.

In implementing the Polak-Ribidre method (Polak, 1971, pp. 53-54)
the linear search subroutine of Gruvaeus & J8reskog (1970) was employed.
Reinitialisation of the process with a steepest descent step was carried
out after each set of q + 1 iterations. Inequalities (7) and (15)

suggest that one should ensure, before each reinitialisation, that the

ordering of columns T maximises Hg_l

This was done and, if reordering or reflection of columns of T was

hiil and that t.. >0, i=1...m.

necessary, X was recomputed using (11) or (17). 1In obligue rotation in
particular this step improved convergence. The Polak-Ribiére method then
appeared to be not much slower than the Fletcher method.

Using the same starting point and convergence criterion as those of
the Fletcher method, the Polak-Ribiére method was applied to Harman's
factor matrix. The rotacted factor matrices yielded by the two methods
agreed to three decimal places. It can be seen from Table 3 that the
Polak-Ribiere method compared quite favourably with the Fletcher method

in speed of convergence.
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.235
.165
.22%
267
- 780
785
843
- 59k
837
.170
.218
.062
.240
.261
174
171
<197
.082
.189
423
.229
435
432
398
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Table l.—Harman's 24 Psychological Tests:

Factor Pattern Matrices.

k= 1/p .

Orthogonal Rotation

.653
419
«520
.518
. 124
.135
.105
.309
.120
-.075
.065
.228
«390
.017
.128
405
.053
.323
.224
432
402
371
.526
.182

.197 .125
072 0T7h
.020 .054
.086 .037
.208 .052
.098 <141
.153 .002
.254 .048
.013 .184
<714 .166
627 .290
.692 .040
.590 .01h4
.196 63
.107 478
127 408
232 <607
306 506
.180 .361
116 .205
<394 .202
064 315
214 .159
459 <267

Oblique R.tation

.002
.02}
083
.110
<750
. 746
841
.493
807
075
.069
-099
065
.146
.029
.0k}
.032
<157
.0%2
«260
.029
.27k
«239
250

<657
429
545
«535
045
.056
.036
.258
.039
.212
071
.154
3h
.103
035
349
.086
.227
.15%0
396
<343
.316
495
.070

.102
.007
.058
.014
<141
.001
.092
.188
.103
. 723
.583
. 708
.582
.080
.023
.012
.086
172
.072
.003
.319
.07k
.109
.383

.088
.05}
.028
.001
-.003
.107
-.062
-.009
.161
.12
.264
-.02Y4
-.092
496
.520
.428
.658
.532
OST7
.185
.170
316
.121
.238




Table 2.—Harman's 24 Psychological Tests:
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Primary Factor Correlations. k = 1/p .
1.000
381 1.000
271 +295 1.000
+350 «330 <375 1.000
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